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Further reading

The book edited by Mishchenko et al. (2000a) is a major systematic source of infor-
mation on calculations, measurements, and applications of electromagnetic scattering
by nonspherical and heterogeneous particles. Further information can be found in the
special journal issues edited by Shafai (1991), Barber et al. (1994), Hovenier (1996),
Lumme (1998), Mishchenko et al. (1999a,b), and Videen et al. (2001) as well as in the
conference proceedings edited by Schuerman (1980), Wriedt et al. (1996), Wriedt and
Eremin (1998), Obelleiro et al. (1999), and Videen et al. (2000b).  The book by Colton
and Kress (1998) treats mathematical and numerical aspects of the inverse scattering
problem for electromagnetic and acoustic waves.

Scattering by randomly and preferentially oriented spheroids and finite circular
cylinders in the geometrical optics limit is discussed by Yang and Cai (1991), Arnott
and Marston (1991), Macke and Mishchenko (1996), Kokhanovsky and Nakajima
(1998), Langley and Marston (1998), and Marston (1999).  Listed in Sassen and Ar-
nott (1998) are several feature journal issues discussing optical phenomena associated
with natural ice crystals.
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Appendix A

Spherical wave expansion of a plane wave in the
far-field zone

In this appendix we derive Eq. (2.57) following the approach described by Saxon
(1955b).  We begin with the well-known expansion of a plane wave in scalar spheri-
cal harmonics (Jackson 1998, page 471):
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where ϑ  and ϕ  are spherical angular coordinates of the unit vector r̂  and m
lP  are

associated Legendre functions defined in terms of Legendre polynomials lP  as fol-
lows:
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with ].1 ,1[−∈x   Using the asymptotic form (Arfken and Weber 1995, p. 682)

,
2

sin1)( �
�

�
�
�

� −=
∞→

ly
y

yj
y

l
π   (A.4)



Appendix A 361

we have
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Substituting this expression in Eq. (A.1) and making use of the completeness relation
for spherical harmonics (Jackson 1998, p. 108)
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and the symmetry relation
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we derive, after simple algebra,
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Appendix B

Wigner functions, Jacobi polynomials, and
generalized spherical functions

Jacobi polynomials, Wigner functions, and generalized spherical functions are closely
related special functions which were introduced in classical analysis, the quantum
theory of angular momentum, and the theory of representations of the rotation group,
respectively (Szegő  1959; Wigner 1959; Gelfand et al. 1963).  Because differences in
notational conventions in various publications may lead to confusion, we present in
this appendix a short consistent summary of the main properties of these functions.

Wigner d-functions are defined as
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where  s, m, and n are integers, ,0 πϑ ≤≤  and the sum is taken over all integer values
of k that lead to non-negative factorials. Thus the summation index runs from =mink

),0max( nm −  to ).,min(max nsmsk −+=   Therefore, 0)( =ϑs
mnd  unless ,minmax kk ≥

which is equivalent to requiring that 0≥s  and ., snms ≤≤−   Making the substitu-
tions ,knsk −−→  ,kmsk −+→  and ,knmk +−→  respectively, we derive the
following alternative expressions:
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Equations (B.1)–(B.4) imply that the d-functions are real and have the following
symmetry properties:
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where mnδ  is the Kronecker delta:
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Substituting Eq. (B.8) in Eq. (B.1) and modifying the resulting formula, we obtain
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Finally, recalling the Leibniz rule,
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and applying it to ,)1()( msxxf ++= ,)1()( msxxg −−=  and ,nsN −=  we can rewrite
Eq. (B.9) in the form
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The Jacobi polynomial of degree q is given by Eq. (4.3.1) of Szegő (1959):
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where q is a non-negative integer and 1−>a  and 1−>b  are real.  Comparing Eq.
(B.12) with Eq. (B.13), we obtain the following expression of the Wigner d-functions
in terms of the Jacobi polynomials for |:|mn ≥
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where ,  ,  , nsqmnbmna −=+=−=  and .1=mnξ   The condition ||mn ≥  ensures
that 0≥a  and ,0≥b  thereby preventing singularities for .1±=x  Using the symme-
try relations of Eq. (B.5), it is straightforward to show that Eq. (B.14) can be used for
arbitrary m and n, provided that
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The orthogonality property of the Jacobi polynomials (Eq. (4.3.3) of Szegő 1959)
and Eqs. (B.14)–(B.16) lead to the following orthogonality property of the d-
functions:

. 
12

2)()(sind
  

0  
ss

s
mn

s
mn s

dd ′
′

+
= δϑϑϑϑ

π

 (B.17)

The completeness property of the Jacobi polynomials (Szegő 1959) and Eqs. (B.14)
and (B.17) imply that functions )(2
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mnds +  with �,1, minmin += sss  form a com-

plete orthonormal system of functions on ],,0[ π  where
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then there exists a unique set of coefficients sη  )( minss ≥  such that the series expan-
sion
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holds in the following sense:
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Conversely, if a real-valued function )(ϑf  on ],0[ π  admits the expansion of Eq.
(B.19) in the sense of Eq. (B.20), then it is square integrable on ],0[ π  and the expan-
sion coefficients are given by
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The latter formula follows directly from Eqs. (B.19) and (B.17).
Using Eq. (4.5.1) of Szegő (1959) and Eq. (B.14), we obtain the following recur-

rence relation for the Wigner d-functions:
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The simplest way to derive this formula is to consider first the case |,|mn ≥  which
corresponds to , ,  , nsqmnbmna −=+=−=  and then to use the symmetry rela-
tions of Eq. (B.5) in order to verify that Eq. (B.22) is correct for arbitrary m and n.
The initial values are given by
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where mnξ  is given by Eq. (B.16).  Equation (B.24) follows directly from Eq. (B.12)
if |,|mn ≥  and it is extended to arbitrary m and n using Eq. (B.5).  From Eq. (B.12),
we easily derive
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Alternatively, we have from Eq. (4.5.5) of Szegő (1959) and Eq. (B.22)
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The Wigner d-functions with 0=m  and 0=n  are equivalent to the usual Legen-
dre polynomials (cf. Eqs. (B.12) and (A.3)):
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For ,0=n  we obtain
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where )(xPm
s  are associated Legendre functions defined by Eq. (A.3). Equations

(B.22) and (B.28) give a simple recurrence relation for the associated Legendre func-
tions:
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Despite its simplicity, the use of this relation in computer calculations for large s and
||m  results in overflows, whereas the original recurrence relation for the functions

)(0 ϑs
md  remains stable and accurate.  Furthermore, the functions )(0 ϑs

md  have simpler
symmetry properties than the ).(xPm

s  It is, therefore, advisable to use the d-functions
instead of the associated Legendre functions from both the analytical and the numeri-
cal standpoint.

The generalized spherical functions )(xPs
mn  are complex-valued functions related

to the Wigner d-functions by (Gelfand et al. 1963; Hovenier and van der Mee 1983)
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Using Eqs. (B.5)–(B.7), we easily derive
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The corresponding orthogonality and normalization condition follows directly from
Eq. (B.17):
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It is straightforward to show that the generalized spherical functions form a com-
plete set of complex functions on the interval ].1,1[ +−∈x   This means that any com-
plex-valued function ),(xf  defined and square-integrable on the interval ∈x
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then there exists a unique set of coefficients sη  )( minss ≥  such that
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Conversely, if a complex-valued function )(xf  on ]1,1[ +−  admits the expansion
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in the sense of Eq. (B.35), then it is square integrable on ]1,1[ +−  and the expansion
coefficients are given by
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(cf. Eqs. (B.33) and (B.36)).
The Wigner D-functions are defined as
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If the sets of Euler angles ),,( 111 γβα  and ),,( 222 γβα  (Section 2.4) describe two
consecutive rotations of a coordinate system and the set ),,( γβα  describes the re-
sulting rotation, then the addition theorem for the D-functions reads
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(see Eq. (2) in Section 4.7 of Varshalovich et al. 1988).  A direct consequence of the
addition theorem is the unitarity condition
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(cf. Eq. (B.6)).
Using Eq. (B.40), we can derive the addition theorem for the Wigner d-functions.

Consider the geometry shown in Fig. B.1, where the angles ,1ϑ ,2ϑ ,12 ϕϕ − ,1σ ,2σ
and Θ  are non-negative and are related by
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(cf. Eqs. (4.17)–(4.19)).  The reference frame formed by the unit vectors )ˆ,ˆ,ˆ( 111 ϕϑn

can be transformed into the reference frame formed by the unit vectors )ˆ,ˆ,ˆ( 222 ϕϑn
in two ways: (i) via a single rotation through Euler angles ),,,( 21 σΘσπ −−  and (ii)



Scattering, Absorption, and Emission of Light by Small Particles368

via two consecutive rotations through Euler angles ), ,0( 121 ϕϕϑ −−  and ).0,,0( 2ϑ
We, therefore, derive from Eqs. (B.38) and (B.40)
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Consider two special cases of Eq. (B.45). If 012 =−ϕϕ  and 21 ϑϑ ≥  then ,01 =σ
,2 πσ =  and ,21 ϑϑΘ −=  and we obtain
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In particular, when ,21 ϑϑ =  Eqs. (B.6) and (B.46) render the unitarity condition for
the d-functions:
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This formula can also be derived directly from the unitarity condition for the D-
functions, Eq. (B.41), by substituting .0== γα   If ,12 πϕϕ =−  then 021 == σσ
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Figure B.1.  Illustration of the addition theorem for Wigner d-functions.
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and ,21 ϑϑΘ +=  and we have
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The product of two D-functions can be expanded in the so-called Clebsch–Gordan
series (Eq. (1) of Section 4.6 of Varshalovich et al. 1988):
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where the nm
mnmnC

2211   are Clebsch–Gordan coefficients (Appendix D). Substituting =α
0=γ  yields
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Further reading

Detailed accounts of Jacobi polynomials, Wigner d-functions, and generalized spheri-
cal functions are given in Szegő (1959), Gelfand et al. (1963), Vilenkin (1968), Bie-
denharn and Louck (1981), Varshalovich et al. (1988), Brink and Satchler (1993),
Rose (1995), and Edmonds (1996).  Our definition of the d-functions is consistent
with that of Biedenharn and Louck (1981), Hovenier and van der Mee (1983), Var-
shalovich et al. (1988), Brink and Satchler (1993), and Rose (1995).  Vilenkin (1968)
uses functions )(xPs

mn  related to the Wigner d-functions by ).(i)( ϑs
mn

mns
mn dxP −=

Edmonds (1996) uses a function ),()( ϑs
mnd  which is related to )(ϑs
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Appendix C

Scalar and vector spherical wave functions

Real-valued spherical Bessel functions of the first kind,
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as well as their complex-valued combinations such as Hankel functions of the first
kind,
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and of the second kind,
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are solutions of the same differential equation,
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where n is an integer (e.g., Abramowitz and Stegun 1964).  Taking into account that
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we find that
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is a solution of the scalar Helmholtz equation

,0),,()( 22 =+∇ ϕϑψ krk mn    (C.6)

where, in spherical coordinates,
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the functions ),,( ϕϑψ krmn  behave as outgoing scalar spherical waves at infinity and
diverge at the origin.  The functions
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also satisfy the Helmholtz equation but, unlike ),,,( ϕϑψ krmn  are regular (finite) at
the origin, owing to
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=
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Since numerical computation of the associated Legendre functions having large n and
||m  is problematic (see Appendix B), it is useful to rewrite Eqs. (C.5) and (C.9) in

terms of Wigner d-functions:
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(cf. Eqs. (B.28) and (B.5)), where we have used a compact way to write two formulas
(for mnψ  and )Rg mnψ as a single equation.

The functions ),,( ϕϑψ krmn  and ),,(Rg ϕϑψ krmn  are called scalar spherical
wave functions and form a complete set of expansion functions that can be used to
represent any time-harmonic scalar wave.  Furthermore, they can be used to create
vector spherical wave functions suitable for expanding time-harmonic vector fields.
According to Eq. (1.17), the electric field in a linear, isotropic, homogeneous medium
is divergence-free:

.0)( =⋅∇ rE  (C.11)
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Therefore, it follows from Eqs. (2.3) and (2.4) and the vector identity
)()]([)( 2 rarara ∇−⋅∇∇=×∇×∇  (C.12)

that )(rE  must satisfy the vector Helmholtz equation

.0)()(  22 =+∇ rErE k  (C.13)

Obviously, vector functions used to expand )(rE  must also be divergence-free and
must satisfy the vector Helmholtz equation.  It can be shown (Stratton 1941; Morse
and Feshbach 1953) that two sets of vector functions that meet these criteria are as
follows:
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where
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In Eqs. (C.19) and (C.20),
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It is straightforward to verify that another class of solutions of the vector Helmholtz
equation
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is the set of so-called longitudinal vector spherical wave functions
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These functions are not divergence-free. It is evident that the vector spherical har-
monics ),,( ϕϑmnB  ),,( ϕϑmnC  and ),( ϕϑmnP  are mutually orthogonal:

.0),(),(),(),(),(),( =⋅=⋅=⋅ ϕϑϕϑϕϑϕϑϕϑϕϑ mnmnmnmnmnmn PCPBCB  (C.26)

Furthermore, M and RgM are perpendicular to N, RgN, L, RgL, and the position
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vector r. Recalling the symmetry relation (B.5), we derive the following symmetry
property of the vector spherical harmonics:
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and analogous relations hold for ),( ϕϑmnC  and ).,( ϕϑmnP  The regular vector
spherical wave functions obey a similar symmetry relation:
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and analogous relations again hold for RgN and RgL.
As follows from Eqs. (C.14), (C.15), and (C.24), the functions RgM, RgN, and

RgL are regular at the origin ).0( =r  On the other hand, using Eq. (C.8) and the for-
mula

)],()1()([
12

1
d

)(d )1(
1

)1(
1

)1(
xhnxhn

nx
xh

nn
n

+− +−
+

=  (C.29)

we find that at infinity, the functions M and N behave as outgoing transverse vector
spherical waves:
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whereas L behaves as an outgoing longitudinal vector spherical wave:
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The vector spherical wave functions defined by Eqs. (C.14), (C.15), and (C.24) and
the vector spherical harmonics defined by Eqs. (C.16)–(C.18) are identical to those
used by Tsang et al. (1985, 2000) and are directly related to the functions ,3,1

mnσM
,3,1

mnσN  ,3,1
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mnC  and σ

mnP  ),,( oe=σ  where e and o stand for even and odd,
introduced by Morse and Feshbach (1953).  Taking into account that the definition of
associated Legendre functions on p. 1325 of Morse and Feshbach (1953) lacks the
factor m)1(−  (cf. Eq. (A.3)) and using their Eqs. (13.3.67)–(13.3.69) as well as their
table of vector spherical harmonics on pp. 1898 and 1899, we find for 0≥m

)],,(i),([)1()1(),( ϕϑϕϑϕϑ o
mn

e
mn

m
mn nn BBB ++−=  (C.33)

)],,(i),([)1()1(),( ϕϑϕϑϕϑ o
mn

e
mn

m
mn nn CCC ++−=  (C.34)

)],,(i),([)1(),( ϕϑϕϑϕϑ o
mn

e
mn

m
mn PPP +−=  (C.35)

)],,,(i),,([ )1(),,( 33 ϕϑϕϑγϕϑ krkrkr omnemnmn
m

mn MMM +−=  (C.36)

)],,,(i),,([)1(),,( 33 ϕϑϕϑγϕϑ krkrkr omnemnmn
m

mn NNN +−=  (C.37)



Appendix C 375

)],,,(i),,([)1(),,( 33 ϕϑϕϑγϕϑ krkrkr omnemnmn
m

mn LLL +′−=  (C.38)

)],,,(i),,([)1(),,(Rg 11 ϕϑϕϑγϕϑ krkrkr omnemnmn
m

mn MMM +−=  (C.39)

)],,,(i),,([)1(),,(Rg 11 ϕϑϕϑγϕϑ krkrkr omnemnmn
m

mn NNN +−=  (C.40)

)].,,(i),,([)1(),,(Rg 11 ϕϑϕϑγϕϑ krkrkr omnemnmn
m

mn LLL +′−=  (C.41)

Conversely,

)],(),([
)1(2

)1(
i
1  

),( ϕϑϕϑϕϑ ∗±
+

−
−

= mnmn

m
o
e

mn
nn

BBB

   )],,(
)!(
)!(),()1[( 

)1(2
1

i
1  

ϕϑϕϑ mnmn
m

mn
mn

nn
−−

+±−
+−

= BB  (C.42)

)],(),([ 
)1(2

)1(
i
1  

),( ϕϑϕϑϕϑ ∗±
+

−
−

= mnmn

m
o
e

mn
nn

CCC

   )],,(
)!(
)!(),()1[(

)1(2
1

i
1  

ϕϑϕϑ mnmn
m

mn
mn

nn
−−

+±−
+−

= CC  (C.43)

)],(),([
2
)1(

i
1  

),( ϕϑϕϑϕϑ ∗±−
−

= mnmn

m
o
e

mn PPP

  )],,(
)!(
)!(),()1[(

2
1

i
1  

ϕϑϕϑ mnmn
m

mn
mn

−−
+±−

−
= PP  (C.44)

)],,(Rg),,(Rg[
2

)1(
i
1  

),,(1 ϕϑϕϑ
γ

ϕϑ krkrkr mnmn
mn

m

mno
e

∗±−
−

= MMM

     )],,,(Rg),,(Rg)1[( 
2

1
i
1  

ϕϑϕϑ
γ

krkr mnmn
m

mn
−±−

−
= MM

 (C.45)

)],,,(),,([
2

)1(
i
1  

),,(3 ϕϑϕϑ
γ

ϕϑ krkrkr mnmn
mn

m

mno
e

∗±−
−

= MMM  (C.46)

)],,(Rg),,(Rg[
2

)1(
i
1  

),,(1 ϕϑϕϑ
γ

ϕϑ krkrkr mnmn
mn

m

mno
e

∗±−
−

= NNN

    )],,,(Rg),,(Rg)1[( 
2

1
i
1  

ϕϑϕϑ
γ

krkr mnmn
m

mn
−±−

−
= NN

      (C.47)

)],,,(),,([
2

)1(
i
1  

),,(3 ϕϑϕϑ
γ

ϕϑ krkrkr mnmn
mn

m

mno
e

∗±−
−

= NNN  (C.48)



Scattering, Absorption, and Emission of Light by Small Particles 376

)],,(Rg),,(Rg[
2

)1(
i
1  

),,(1 ϕϑϕϑ
γ

ϕϑ krkrkr mnmn
mn

m

mno
e

∗±
′

−
−

= LLL  

    )],,,(Rg),,(Rg)1[(
2

1
i
1  

ϕϑϕϑ
γ

krkr mnmn
m

mn
−±−

′−
= LL  

    (C.49) 

)].,,(),,([
2

)1(
i
1  

),,(3 ϕϑϕϑ
γ

ϕϑ krkrkr mnmn
mn

m

mno
e

∗±
′

−
−

= LLL      (C.50) 

The equations on p. 1900 of Morse and Feshbach (1953) and Eqs. (C.33)–(C.35) yield 
the following orthogonality relations for the vector spherical harmonics: 
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 Using Eqs. (C.42)–(C.50), we can rewrite the series expansion of the dyadic 
rr ⋅′ieI  on p. 1866 of Morse and Feshbach (1953) as follows (Tsang et al. 1985, 2000): 
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The expansion of the plane electromagnetic wave 
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in vector spherical wave functions is obtained by taking the dot product of 0E  and
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and we have taken into account that mna  and mnb  vanish for .0=n  The free space
dyadic Green’s function given by
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(cf. Eqs. (2.13) and (2.15)) can also be expressed in terms of vector spherical wave
functions:
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where rr ′≠  (Tsang et al. 1985, p. 183).
Let ),( 11 ϕϑ  and ),( 22 ϕϑ  be the spherical angles of the same position vector r in

coordinate systems 1 and 2, respectively.  Both coordinate systems have the same
origin.  Coordinate system 2 is obtained by rotating coordinate system 1 though Euler
angles ),,( γβα  (Section 2.4). From Eq. (1) of Section 5.2 and Eq. (1) of Section 5.5
of Varshalovich et al. (1988) and Eqs. (C.5) and (C.9) above we have
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are Wigner D-functions and )(βn
mmd ′  are Wigner d-functions (Appendix B).  Substi-

tuting Eq. (C.62) in Eqs. (C.14) and (C.15) yields



Scattering, Absorption, and Emission of Light by Small Particles378

),,,(
),,(Rg

),,(
),,(Rg

),,(

11

11

22

22 γβα
ϕϑ

ϕϑ
ϕϑ

ϕϑ n
mm

nm

nm
n

nmmn

mn D
kr

kr
kr

kr
′

′

′

−=′

=
M

M
M

M
 (C.64)

and analogously for N and RgN. Conversely,
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Consider now coordinate systems 1 and 2 having the same spatial orientation and
denote by 12r  the vector connecting the origin of coordinate system 1 with the origin
of coordinate system 2 (cf. Fig. 5.2).  The translation addition theorem allows one to
expand the vector spherical wave functions centered at the origin of coordinate sys-
tem 1 in terms of the vector spherical wave functions centered at the origin of coordi-
nate system 2 (Tsang et al. 1985; Boström et al. 1991). Specifically, if vectors ,1r  ,2r
and 12r  form a triangle such that 2121 rrr +=  (Fig. 5.2) and ),,,( 111 ϕϑr  ),,,( 222 ϕϑr
and ),,( 121212 ϕϑr  are their respective spherical coordinates, then
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are translation coefficients.  Here
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and the coefficients

�
�
�

�
�
�
�

�

+− )( µµ
ν

mm
pn

are Wigner 3j symbols (Appendix D).  As usual, the formulas for mnAµνRg  and

mnBµνRg  are obtained by replacing )1(
ph  by pj  in Eqs. (C.69) and (C.70).  Efficient

numerical computation of the translation coefficients ,mnAµν ,mnBµν ,Rg mnAµν  and

mnBµνRg  is discussed by Fuller and Mackowski (2000).
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Appendix D

Clebsch–Gordan coefficients and Wigner 3j symbols

The real-valued coefficients appearing in the Clebsch–Gordan expansion, Eq. (B.49),
are defined as an algebraic sum (Varshalovich et al. 1988; Rose 1995):
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(D.1)

where

● ,1n  ,2n  and n  are non-negative integers or half-integers;
● ,1m  ,2m  and m  are integers or half-integers;
● ,|| 11 nm ≤ ,|| 22 nm ≤  and ;|| nm ≤
● ,11 nm +  ,22 nm +  ,nm +  and nnn ++ 21  are non-negative integers.

The Clebsch–Gordan coefficients are nonzero only when

2121 || nnnnn +≤≤−    (D.2)

and
.21 mmm +=   (D.3)

The so-called unitarity relations for the Clebsch–Gordan coefficients read as
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.
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The Clebsch–Gordan coefficients have the following symmetry properties:
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The so-called Wigner 3j symbols are defined in terms of the Clebsch–Gordan coeffi-
cients as
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Conversely,
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The symmetry properties of the 3j symbols follow from Eqs. (D.6)–(D.9) and are
simpler than those for the Clebsch–Gordan coefficients:
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The numerical computation of the Clebsch–Gordan coefficients is based on the
following formulas, which are either listed by Varshalovich et al. (1988) or can be
easily derived from equations therein (Mishchenko 1991a).

● For |),||,max(| 1min mnnNn ′−=<′
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● For ,minNn >′
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● For ,minNn =′  the following four particular cases must be considered.
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(2)  For |||| 1 mnn ′≥−  and ,1nn <  we use the symmetry relation (cf. Eq. (D.6))
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along with Eq. (D.17).

(3)  For |||| 1 mnn ′<−  and ,0≥′m
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(4)  For |||| 1 mnn ′<−  and ,0<′m  we use the formula (cf. Eq. (D.7))
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along with Eq. (D.19).
We have found that the numerical scheme based on the upward recursion (D.13)

produces stable results only for n′  smaller than approximately 60 if double-precision
(REAL*8) floating-point FORTRAN variables are used and smaller than approxi-
mately 105 if the scheme is implemented using extended-precision (REAL*16) vari-
ables.  The instability occurs in those cases when the use of the upward recursion
causes n′  to reach what Schulten and Gordon (1975) call the classical domain of
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-n′ values centered at ,2)( maxmin NNNn +=≈′  where ,1max nnN +=  and then the
non-classical domain with .Nn �′   Clebsch–Gordan coefficients first increase in ab-
solute value with increasing ,n′  then oscillate with a slowly varying amplitude in the
classical domain, and finally rapidly decay in absolute value as n′  reaches the non-
classical domain.  This behavior results in catastrophic loss of numerical accuracy in
the classical domain followed by overflows in the non-classical domain.

To stabilize the computation of the Clebsch–Gordan coefficients, we have imple-
mented a modified version of the procedure proposed by Schulten and Gordon
(1975).  Specifically, the upward recursion of Eq. (13) is used only for ,Nn ≤′
whereas the Clebsch–Gordan coefficients with Nn >′  are computed using the down-
ward analog of Eq. (13),
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supplemented by the initial values
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Since the two-directional recursion scheme always works towards the center of the
classical domain ),( Nn ≅′  it produces highly accurate and stable results.  We have
found that it works well for n′  exceeding 150 even when the numerical procedure is
implemented using double-precision variables (Wielaard et al. 1997).

Equations (D.17), (D.19), and (D.26) involve ratios of products of several factori-
als. Although these ratios are finite numbers with quite limited values, the factorials
themselves can cause computer overflows in actual computer calculations.  In order to
avoid overflows, a useful approach is to store an array of natural logarithms of facto-
rials of integers ranging from 0 to an appropriate maximal value.  Then the ratio of
two factorials is computed as )].!ln()!exp[ln(!! nmnm −=   The logarithms of the
factorials should be computed using the upward recursion +=+ )!ln(])!1ln[( mm

).1ln( +m
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Appendix E

Système International units

The system of physical units adopted in this book is the internationally accepted form
of the metric system known as the Système International (SI).  The SI is formed by
base units, supplementary units, and units derived from the base units.  The table be-
low lists only those derived SI units that are used in this book.

Quantity Unit Symbol Definition

Base units
   length meter m

time second s
mass kilogram kg
electric current ampere A
temperature kelvin K
amount of substance mole mol

Supplementary units
plane angle radian rad
solid angle steradian sr

Derived units
energy joule J 22 smkgmN −=
electric charge coulomb C sA 
electric potential volt V 1321 A s mkgAW −−− =
electric capacitance farad F 24211 A s mkgVC −−− =
electric resistance ohm Ω 2321 A s mkgAV −−− =
magnetic flux weber Wb 122 A smkgsV −−=
inductance henry H 2221 A s mkgAWb −−− =
frequency hertz Hz 1s−

power watt W 321 smkgsJ −− =
 force newton N 2s m kg −
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Abbreviations and symbols

The list includes only those abbreviations and symbols that are encountered in two or
more sections or are used to denote two or more quantities.

Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

English abbreviations and symbols
a semi-axis of an ellipsoid [m] 3.2
a equivalent-sphere radius [m] 3.2
a radius of a sphere [m] 3.3
a typical particle dimension [m] 5.8.2
a parameter of the gamma size distribution [m] 5.10.1
a horizontal semi-axis of a spheroid [m] 5.11.2
a semi-major particle dimension [m] 7.1
a column vector of expansion coefficients of

the incident electric field [V m–1] 5.1
na Lorenz–Mie coefficients [–] 5.2.2
mna expansion coefficients of the incident electric

field [V m–1] 5.1
)(Θja diagonal elements of the normalized Stokes

scattering matrix [–] 4.10
A 44×  transformation matrix [–] 1.3
A matrix formed by the translation coefficients

mnAµν  [–] 5.2.4

A Mueller matrix of the analyzer [–] 8.1
mnAµν translation coefficients [–] Appendix C

A
�

scattering dyadic [m] 2.2
b semi-axis of an ellipsoid [m] 3.2
b parameter of the gamma size distribution [–] 5.10.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

b vertical (rotational) semi-axis of a spheroid [m] 5.11.2
b column vector of the expansion coefficients

of the incident electric field [V m–1] 5.1
nb Lorenz–Mie coefficients [–] 5.2.2
mnb expansion coefficients of the incident electric

field [V m–1] 5.1
)(Θjb off-diagonal elements of the normalized Stokes

scattering matrix [–] 4.10
B magnetic induction [Wb m–2] 1.1
B 44×  transformation matrix [–] 1.3
B matrix formed by the translation coefficients

mnBµν  [–] 5.2.4

BCGM bi-conjugate gradient method 6.5
mnBµν translation coefficients [–] Appendix C

)(ϑmnB vector angular functions [–] Appendix C
),( ϕϑmnB vector angular functions [–] Appendix C

c speed of light in a vacuum [m s–1] 1.2
c semi-axis of an ellipsoid [m] 3.2

�� Θcos asymmetry parameter [–] 2.8
C circular-polarization amplitude scattering
                     matrix [m] 4.12
CGM conjugate gradient method 6.2

−−+−−+++ CCCC ,,, elements of the circular-polarization amplitude
scattering matrix [m] 4.12

absC absorption cross section [m2] 2.8
extC extinction cross section [m2] 2.8
prC radiation-pressure cross section [m2] 2.9
scaC scattering cross section [m2] 2.8
nm

mnmnC
2211  Clebsch–Gordan coefficients [–] Appendix D

)(ϑmnC vector angular functions [–] Appendix C
),( ϕϑmnC vector angular functions [–] Appendix C

�� absC average absorption cross section per
particle [m2] 3.1

�� bC average backscattering cross section per
particle [m2] 9.5

�� extC average extinction cross section per particle
[m2] 3.1

�� prC average radiation-pressure cross section per
particle [m2] 3.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

�� scaC average scattering cross section per
particle [m2] 3.1

Ωd
d scaC differential scattering cross section [m2] 2.8

nd coefficient [–] Appendix C
)(ϑs

mnd Wigner d-functions [–] Appendix B
D diameter of a circular cylinder [m] 5.11.2
D diameter of the host sphere [m] 10.10
D electric displacement [C m–2] 1.1
D 44×  transformation matrix [–] 1.3
DDA discrete dipole approximation 6.5

)(ϑs
mnD Wigner D-functions [–] Appendix B

e base of natural logarithms [–]
E electric field [V m–1] 1.1
E unit matrix [–] 5.2.3
EBCM extended boundary condition method 5.8.1

ϕϑ EE  , spherical coordinate components of the
electric field vector [V m–1] 1.3

−+ EE , circular components of the electric field
vector [V m–1] 4.12

F radiation force [N] 2.9
F Stokes scattering matrix [m2] Introduction

to Chapter 4
FDM finite-difference method 6.2
FDTDM finite-difference time-domain method 6.3
FEM finite-element method 6.2
FFT fast Fourier transform 6.5
FIEM Fredholm integral equation method 6.5

ijF elements of the Stokes scattering matrix [m2] 4.1

F~ normalized Stokes scattering matrix [–] 4.10
CP~F normalized circular-polarization scattering

matrix [–] 4.12
��F average radiation force per particle [N] 4.6
��F average Stokes scattering matrix per particle

[m2] 4.2
),( rr ′g scalar Green’s function [m–1] 2.1

s
pqg expansion coefficients [–] 4.12

G area of the particle geometrical projection [m2] 2.8
GE Gaussian elimination 6.2
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

GPMM generalized PMM 6.4
G
�

free space dyadic Green’s function [m–1] 2.1
��G average area of the geometrical projection per

particle [m2] 4.6
)1(

nh Hankel functions of the first kind [–] Appendix C
)2(

nh Hankel functions of the second kind [–] Appendix C
H magnetic field [A m–1] 1.1
i 1−  [–] 1.1
I intensity (irradiance) [W m–2] 1.2
I monochromatic specific intensity (radiance)

[W rad–1 s m–2 sr–1] 3.4
I first Stokes parameter [W m–2] 1.3
I 14×  Stokes column vector [W m–2] 1.3
I 14×  monochromatic specific intensity column

vector [W rad–1 s m–2 sr–1] 3.4
Im imaginary part 

2002  , , , IIII − elements of the circular-polarization column
vector [W m–2] 1.3

bI Planck blackbody energy distribution
[W rad–1 s m–2 sr–1] 2.10

bI 14×  blackbody Stokes column vector
[W rad–1 s m–2 sr–1] 2.10

hv  , II first and second elements of the modified
Stokes column vector [W m–2] 1.3

CPI 14×  circular-polarization column vector
[W m–2] 1.3

MSI 14×  modified Stokes column vector [W m–2] 1.3
I
�

identity dyadic [–] 2.1
lj spherical Bessel functions of the first kind [–] Appendix A

J current density [A m–2] 1.1
J 14×  coherency column vector [W m–2] 1.3

SJ surface current density [A m–1] 1.1
IR ikkk += (complex) wave number [m–1] 1.2
IR ikkk += (complex) wave vector [m–1] 1.2

1k wave number in the exterior region [m–1] 2.1
2k wave number in the interior region [m–1] 2.1

L length of a cylinder [m] 5.11.2
CPMS  , , LLL 44×  rotation matrices [–] 1.5

IR immm += (complex) refractive index relative to vacuum
or surrounding medium [–] 1.2, 2.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

M magnetization [A m–1] 1.1
M Mueller matrix of the modulator [–] 8.1
ME-GPMM multiple-expansion GPMM 6.4
MOM method of moments 6.5

mnM vector spherical wave functions [–] Appendix C
)(an size distribution function [m–1] 3.2

0n particle number density [m–3] 3.4
maxn parameter specifying the size of the T matrix [–] 5.8.4
maxn maximal order of Lorenz–Mie coefficients [–] 5.10.1

n̂ unit vector [–] 1.1
incn̂ unit vector in the incidence direction [–] 2.2
scan̂ unit vector in the scattering direction [–] 2.2

N number of particles [–] 3.1
GN number of Gaussian division points in

Eq. (5.202) [–] 5.8.3
mnN vector spherical wave functions [–] Appendix C

p phase function [–] 2.8
)(xp probability density function [dimension is

that of ]1−x 3.2
p column vector of the expansion coefficients

of the scattered electric field [V m–1] 5.1
mnp expansion coefficients of the scattered electric

field [V m–1] 5.1
P degree of (elliptical) polarization [–] 1.6
P electric polarization [C m–2] 1.1
P Mueller matrix of the polarizer [–] 8.1
PMM point-matching method 6.4

CP degree of circular polarization [–] 1.6
LP degree of linear polarization [–] 1.6
QP degree of linear polarization [–] 1.6

)(xPl Legendre polynomials [–] Appendix A
)(xPm

l associated Legendre functions [–] Appendix A
)(xPs

mn generalized spherical functions [–] Appendix B
)(),( xP ba

q Jacobi polynomials [–] Appendix B
)(ϑmnP vector angular functions [–] Appendix C

),( ϕϑmnP vector angular functions [–] Appendix C
q 22×  transformation matrix [–] 4.12
q column vector of the expansion coefficients

of the scattered electric field [V m–1] 5.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

mnq expansion coefficients of the scattered
electric field [V m–1] 5.1

Q second Stokes parameter [W m–2]  1.3
Q second element of the monochromatic specific

intensity column vector [W rad–1 s m–2 sr–1] 3.4
Q Q matrix [–] 5.8.1
Q Mueller matrix of the quarter-wave plate [–] 8.1

absQ efficiency factor for absorption [–] 2.8
bQ backscattering efficiency factor [–] 9.5
extQ efficiency factor for extinction [–] 2.8
prQ efficiency factor for radiation pressure [–] 2.9
scaQ efficiency factor for scattering [–] 2.8

r distance from the origin of a coordinate
system [m] 2.2

r radius of a spherical particle [m] 5.10.1
r radius (position) vector [m] 1.1

0r parameter specifying the size of Chebyshev
and generalized Chebyshev particles [m] 5.11.2, 5.12

21  , rr parameters of the power law and modified
power law  size distributions [m] 5.10.1

12r distance between two coordinate system
origins [m] 2.11

12r distance between the components of a two-
sphere cluster [m] 5.13

cr parameter of the modified gamma size
distribution [m] 5.10.1

effr effective radius of a size distribution [m] 5.10.1
gr parameter of the log normal size distribution

[m] 5.10.1
21  , gg rr parameters of the modified bimodal log normal

size distribution [m] 5.10.1
maxr maximal radius of a size distribution [m] 5.10.1
minr minimal radius of a size distribution [m] 5.10.1
sr surface-equivalent-sphere radius [m] 5.8.4
vr volume-equivalent-sphere radius [m] 5.11.2
>r radius of the smallest sphere circumscribing a

particle [m] 5.1
<r radius of the largest inscribed sphere of a

nonspherical particle [m] 5.8.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

r̂ unit vector in the direction of r [–] 2.2
Re real part
Rg stands for “regular” Appendix C
RH Rayleigh hypothesis 6.4

beR backscatter-to-extinction ratio [–] 9.5
ebR extinction-to-backscatter ratio [–] 9.5

S surface area [m2] 1.1
S Poynting vector [W m–2] 1.1
S amplitude scattering matrix [m] 2.2
S S matrix [–] 5.2.3

ijS elements of the amplitude scattering matrix
[m] 2.2

SIEM surface integral equation method 6.5
SVM separation of variables method 6.1
S
�

scattering tensor [–] 2.3
��S time-averaged Poynting vector [W m–2] 1.1

t time [s] 1.1
t crystal distortion parameter [–] 10.7
t 22×  transformation matrix [–] 2.4
T absolute temperature [K] 2.10
T T matrix [–] 5.1

kl
nmmnT ′′ elements of the T matrix [–] 5.1

)(cosϑnT Chebyshev polynomial of degree n [–] 5.11.2
T
�

dyadic transition operator [m–5] 2.1
MT
�

Maxwell stress tensor [N m–2] 2.9
U third Stokes parameter [W m–2] 1.3
U third element of the monochromatic specific

intensity column vector [W rad–1 s m–2 sr–1] 3.4
v phase velocity [m s–1] 1.2
v velocity vector [m s–1] 1.1

effv effective variance of a size distribution [–] 5.10.1
V volume [m3] 1.1
V fourth Stokes parameter [W m–2] 1.3
V fourth element of the monochromatic specific

Intensity column vector [W rad–1 s m–2 sr–1] 3.4
VIEM volume integral equation method 6.5

EXTV exterior region [m3] 2.1
INTV interior region [m3] 2.1

W power [W] 1.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

x size parameter [–] 5.8.2
ba xx  , size parameters along spheroid semi-axes [m] 5.11.7

effx effective size parameter of a size distribution
[–] 9.2

sx surface-equivalent-sphere size parameter [–] 5.8.4
vx volume-equivalent-sphere size parameter [–] 10.4
ly spherical Bessel functions of the second kind [–] Appendix C

)ˆ(rlmY spherical harmonics [–] Appendix A
Z Stokes phase matrix [m2] 2.6

ijZ elements of the Stokes phase matrix [m2] 2.6
CPZ circular-polarization phase matrix [m2] 2.6
JZ coherency phase matrix [m2] 2.6
MSZ modified Stokes phase matrix [m2] 2.6
Z~ normalized Stokes phase matrix [–] 4.10

CP~Z normalized circular-polarization phase matrix
[–] 4.12

��Z average Stokes phase matrix per particle [m2] 3.1

Greek symbols
α absorption coefficient [m–1] 1.2
α first Euler angle [rad] 2.4
α parameter of the modified gamma size

distribution [–] 5.10.1
α exponent of the modified power law size

distribution [–] 5.10.1
α local incidence angle [rad] 9.4
α 23×  transformation matrix [–] 2.4

s
jα expansion coefficients [–] 4.11

β ellipticity angle of the polarization ellipse [rad] 1.4
β second Euler angle [rad] 2.4
β 33×  transformation matrix [–] 2.4

s
jβ expansion coefficients [–] 4.11

β backscattered fraction for isotropically incident
radiation [–] 10.3

γ third Euler angle [rad] 2.4
γ parameter of the modified gamma size

distribution [–] 5.10.1
γ parameter of the modified bimodal log normal

size distribution [–] 5.10.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

mnγ coefficient [–] Appendix C
mnγ ′ coefficient [–] Appendix C
Γ radiation torque [N m] 2.9

)(δ x Dirac delta function [dimension is that of ]1−x 2.1
)(δ r three-dimensional Dirac delta function [m–3] 2.1
)ˆ(δ n solid-angle Dirac delta function [–] 2.3

Cδ circular backscattering depolarization ratio [–] 10.2
Lδ linear backscattering depolarization ratio [–] 4.9
mnδ Kronecker delta [–] Appendix B
∆ 44×  unit matrix [–] 4.4

3∆ 44×  transformation matrix [–] 2.6
23∆ 44×  transformation matrix [–] 2.6
34∆ 44×  transformation matrix [–] 4.3
CP∆ 44×  transformation matrix [–] 4.12
MS∆ 44×  transformation matrix [–] 2.6

ε electric permittivity [F m–1] 1.1
ε aspect ratio of a nonspherical particle [–] 3.2

0ε electric permittivity of free space [F m–1] 1.1
1ε electric permittivity of the surrounding medium

[F m–1] 2.1
ζ orientation angle of the polarization ellipse

[rad] 1.4
η rotation angle [rad] 1.5
ϑ polar (zenith) angle [rad] 1.3
ϑ̂ unit vector in the ϑ  direction [–] 1.3
Θ scattering angle [rad] 2.8
Κ Stokes extinction matrix [m2] 2.7

ijΚ elements of the Stokes extinction matrix [m2] 2.7
CPΚ circular-polarization extinction matrix [m2] 2.7
eΚ 14×  Stokes emission column vector

[W rad–1 s sr–1] 2.10
JΚ coherency extinction matrix [m2] 2.7
MSΚ modified Stokes extinction matrix [m2] 2.7
��Κ average Stokes extinction matrix per particle

[m2] 3.1
�� eΚ average Stokes emission column vector per

particle [W rad–1 s sr–1] 3.1
λ free-space wavelength [m] 1.2

1λ wavelength in the surrounding medium [m] 3.4
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

µ magnetic permeability [H m–1] 1.1 
0µ magnetic permeability of free space [H m–1] 1.1 

ξ deformation parameter for Chebyshev particles
[–] 5.11.2

mnξ coefficient [–] Appendix B
π pi [–]
ϖ single-scattering albedo [–] 2.8

)(ϑπ n angular functions [–] 5.7
)(ϑπ mn angular functions [–] 5.1

ρ charge density [C m–3] 1.1
ρ phase shift [–] 9.1
ρ phase function ratio [–] 10.2
ρ 22× coherency (density) matrix [W m–2] 1.3

Sρ surface charge density [C m–2] 1.1
σ conductivity [Ω–1 m–1] 1.1
σ surface roughness parameter [–] 10.7

21  ,σσ rotation angles [rad] 4.3
gσ parameter of the log normal size distribution [–] 5.10.1

21  , gg σσ parameters of the modified bimodal log normal
size distribution [–] 5.10.1

�� bσ average radar backscattering cross section per
particle [m2] 9.5

τ optical path length [–] 4.13
τ optical thickness of the host particle [–] 10.10

)(ϑτ n angular functions [–] 5.7
)(ϑτ mn angular functions [–] 5.1

ϕ azimuth angle [rad] 1.3
ϕ̂ unit vector in the ϕ  direction [–] 1.3
χ electric susceptibility [–] 1.1
ω angular frequency [rad s–1] 1.1
Ω solid angle [sr] 2.10

Miscellaneous symbols
∗x complex-conjugate value of x 1.1
��x average of x 1.1
|| x absolute value of x
ba ⋅ dot (scalar) product of vectors a and b
ba × vector product of vectors a and b
ba ⊗ dyadic product of vectors a and b 2.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

�
�
�

�
�
�
�

�

rqp
nml

Wigner 3j symbols Appendix D

�
�
�

�

�

�
�
�

�

�

dc

ba

�

���

�

matrix

1−A inverse of A 1.3
TA transpose of A 1.4

diag[a, b] �
�

�
�
�

�

b
a
0

0

TS
�

transpose of S
�

2.3
∇ gradient [m–1]
∈ element of
∪  union of sets
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absorption, 3, 11, 58
absorption coefficient, 15
aggregated particles, see particles, aggregated
Alexander’s dark band, 259
amplitude scattering matrix, 37–8, 118

backscattering, 94
backscattering theorem for, 41–2
circular-polarization, 106

for spherically symmetric particles,
141

for rotationally symmetric particles, 183
for spherically symmetric particles,

139–40
forward-scattering, 91–3
reciprocity relation for, 41, 84
rotation transformation law for, 46
symmetry properties of, 84–5
translation transformation law for, 66–7

angle
azimuth, 16     
polar, 16
scattering, 60, 83, 87
zenith, see angle, polar

angular frequency, 5, 10
anomalous diffraction approximation, see

approximation, anomalous diffraction
approximation

anomalous diffraction, 210
Born, see approximation, Rayleigh–Gans

effective-medium, 350
eikonal, 210
geometrical optics, 210–21, 258–60,

264–5, 320–5
high-energy, 210
Kirchhoff, 212, 220
ray optics, see approximation,

geometrical optics
ray-tracing, see approximation,
   geometrical optics
Rayleigh, 206–9, 264
Rayleigh–Debye, see approximation,

Rayleigh–Gans
Rayleigh–Gans, 35, 209–10, 256, 264,
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Rayleigh–Gans–Stevenson, 207
scalar, 109
single-scattering, 6
Wentzel–Kramers–Brillouin, 210
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350–1

for spherically symmetric particles, 142,
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backscattering theorem, 41–2, 54
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asymptotic form for, 360
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energy distribution, 63
Stokes column vector, 65, 98
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Born approximation, see approximation,
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cirrus clouds, see ice clouds
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of spheres, 156, 190, 201, 337–47

of spheroids, 201
two-sphere, 74–6, 80–1, 186–9, 203–4,

337–45, 357–8
coherency matrix, 17

additivity of, 28
coherency column vector, 17, 50, 54–5
coherent backscattering, 7, 42, 79–82, 220
completely polarized light, see fully polarized

light
composite particles, 154–8
computer codes, 158–90, 193, 195, 199, 205,

214
condensation trails (contrails), 353–5
conductivity, 9
constitutive relations, 9, 117
continuity equation, 9
coordinate system

Cartesian, 15
device, 130
laboratory, 42–6, 119, 130
particle, 42–6, 119
right-handed, 15–6
spherical, 15–6

coupled dipole method, see discrete dipole
approximation

cross section
absorption, 57–8, 227–8, 254–5, 294,

299, 302, 340, 343
average, 71, 97
backscattering, 267
differential scattering, 59
extinction, 57–9, 119, 227, 294–5, 299,

300, 339–40, 343
average, 70, 93
for randomly oriented particles,

132–3
for spherically symmetric particles,

140
geometrical, 59
radar backscattering, 267
radiation-pressure, 62

average, 71, 97
scattering, 57–8, 119, 294, 299, 301, 340,

343
average, 69, 71, 96
for macroscopically isotropic and

mirror-symmetric media, 95–6
for randomly oriented particles,



Index 443

138–9
for spherically symmetric particles,

140
current density, 9

surface, 10
cylinders

circular, 171–2, 185, 203–4, 210, 213,
215–20, 299–310

with extreme aspect ratios, 221–2,
315–8

hexagonal, 146, 210, 213, 320–2, 350

delta-function transmission, 218–20
density matrix, see coherency matrix
depolarization, 54, 100, 295–7, 307, 339

in remote sensing, 352–6   
dichroism, 3, 56, 78
differential equation methods, 191
diffraction, see Fraunhofer diffraction
Dirac delta function

solid-angle, 41
three-dimensional, 33

direct scattering problem, 237, 351
discrete dipole approximation, 198–9, 203,

205
discretized Mie formalism, 205, 222
dyad, 34
dyadic, 33–34
dyadic transition operator, 35

integral equation for, 35

effective-medium approximation, 350
effective radius, 161, 285–7
effective size parameter, 250, 286
effective variance, 161, 251–2, 285–7
efficiency factor

for absorption, 59, 97, 254–5
for backscattering, 267, 269, 292, 295
for extinction, 59, 97, 238–47, 253–4,

309, 312
for radiation pressure, 62, 97, 257–8,

309, 312
for scattering, 59, 97, 253–4

eikonal approximation, 210
electric displacement, 9
electric field, 9
electric permittivity, 9
electric polarization, 9

electric susceptibility, 9
electromagnetic wave, 3, 12

circular components of, 105
emission column vector, Stokes, 63–5

average, 71, 78, 98
emission, thermal, 3, 63–6, 97–8
energy conservation law, 11, 37, 122
ensemble averaging, 72–3, 159–60, 334–7
equilibrium, thermal, 63–5
Euler angles, 42, 119–20, 367
Ewald–Oseen extinction theorem, 115
extended boundary condition, 144
extended boundary condition  method, 115,

142–7, 196
convergence of, 150–3, 170–1, 178–80
for rotationally symmetric particles,

148–50
iterative, 152, 205
multiple-multipole, 152

extinction, 3, 58, 78
extinction matrix

circular-polarization, 56
reciprocity relation for, 56

coherency, 55
reciprocity relation for, 56

modified Stokes, 56
reciprocity relation for, 56

Stokes, 55–6
average, 70, 78
for axially oriented particles, 127–32
for macroscopically isotropic and

mirror-symmetric media, 91–3
reciprocity relation for, 56, 71
symmetry property of, 56

extinction-to-backscatter ratio, 267

far-field zone, 5, 35–8
finite-difference method, 194, 205
finite-difference time-domain method, 195–6,

205, 321
finite-element method, 193–5, 205
Fraunhofer diffraction, 212–3, 220, 227,

258–9
Fredholm integral equation method, 200, 205
fully polarized light, 27, 54

Gaussian random spheres, 328
generalized spherical functions, 103, 107,
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366–7
geometrical optics approximation, 210–21,

258–60, 264–5, 320–5
glory, 260, 264
Green’s function

dyadic, free space, 33–6, 377
scalar, 34–6

Green’s vector theorem, 142

halos, 320–2, 350
Hankel functions, 169, 370
Helmholtz equation

scalar, 371
vector, 193, 205, 372–3

homogeneous wave, 13
Huygens’ principle, 115
hydrometeors

nonspherical, 100, 127, 352
partially aligned, 100

ice clouds, 321, 322, 352, 354–5, 358
identity dyadic, 33, 36
incident field, 31, 33, 47, 116
independently scattering particles, 6, 74
inhomogeneous wave, 13
integral equation methods, 191, 197–200
intensity of light, 15, 18
interference of light, 7, 58, 79, 343, 344
interference structure, 240, 250–1,

279–82
interstellar dust grains, 100, 127
interstellar polarization, 99, 351
inverse scattering problem, 237, 351
irradiance, see intensity 
irregular particles, 322–34

Jacobi polynomials, 364

Kirchhoff approximation, 212, 220
Koch fractals, 325, 327

random, 325–8
Kronecker delta, 363

Legendre functions, associated, 140, 360, 366,
374

Legendre polynomials, 360, 365
levitation

electrostatic, 273, 358

optical, 60, 228, 273
lidars, 228, 352, 355
Lippmann–Schwinger equations, 35
Lorenz–Mie

coefficients, 122, 153–4
computer code, 158–65, 238
identities, 100, 352
scattering matrix, 99
theory, 99, 114, 115, 139–42, 238

magnetic field, 9
magnetic induction, 9
magnetic permeability, 9
magnetization, 9
Maxwell equations, 5, 8–9, 32, 77, 78, 113,

191, 195
linearity of, 37, 39, 117
plane-wave solution of, 12–15

Maxwell stress tensor, 60
measurement techniques for scattering,

224–33
using microwaves, 224, 230–3
using visible and infrared light, 113,

224–30, 273–4, 329–34, 345,
351–8

two-dimensional angular, 230, 351–2
meridional plane, 16, 23, 38, 83, 88
method of moments, 198–9, 205
microwave analog technique, 113, 147,

230–3
microwave measurement techniques, 224,

230–3
mineral particles, 329–39
monochromatic light, 3, 12
monodisperse particles, 165, 177, 238–50,

279–82, 335, 341

natural light, see unpolarized light
near-field effects, 80
nonsphericity, effects of, 99–100, 279–82
null-field method, 115

with discrete sources, 152

optical equivalence principle, 18, 28
optical theorem, 49, 56, 58, 207
orientation angle of the polarization ellipse,

20
orientation averaging, see averaging,
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orientation
orientation distribution, 72–3

axially symmetric, 73, 127
random, 73

orientation of the scattering object, see
particle orientation

outgoing wave, 34, 36, 371, 374

parallel beam of light, 3, 12
particle characterization, optical, 7, 82,

229–30, 249, 273–8, 350–8
particle collection, 5, 68

tenuous, 7
particle orientation, 42

effects of, 99–100, 279–82
particle shapes, 171–2, 182, 283, 322, 325,

330
particles

absorbing, 124, 216
aggregated, 154–8
Chebyshev, 171–2, 182, 185, 319

generalized, 182, 185
clay, 329–32
composite, 154–8
dust, 355–6
feldspar, 329–31
fly ash, 345, 348
independently scattering, 6, 74
irregular, 322–34
loess, 329–31, 335
mineral, 329–39
monodisperse, 165, 177, 238–50,

279–82, 335, 341
nonabsorbing, 122–5, 139, 152
polydisperse, 158, 165, 250–73,

282–310, 345, 354, 356
polyhedral, 146, 213, 320–3
quartz, 329–31, 333
randomly and sparsely distributed,

68–71, 75, 77
randomly oriented, 73, 87, 100, 132–9
randomly shaped, 322
rotationally symmetric, 46, 93, 102, 121,

125, 129, 133, 135, 138, 148–50,
165, 169, 171–2, 180

Sahara sand, 329–31, 337
spherical, 98–9, 102, 122, 139–42, 158,

214–6, 238–78

anisotropic, 222
Faraday-active, 221
monodisperse, 238–50
polydisperse, 250–73

stochastically shaped, see particles,
randomly shaped

volcanic, 329–31, 334, 336
with inclusions, 156–7, 201, 213–14,

347–51
with rough surfaces, 325–6, 328

perturbation theories, 221
phase, 13, 18, 20
phase function, 59–60, 101

for irregular particles, 322–8
for monodisperse spherical particles, 248
for polydisperse spherical particles,

258–67
for randomly oriented circular cylinders,

301–2, 306, 315–6
for randomly oriented spheroids, 286–91,

297, 309
normalization condition for, 60, 101
Rayleigh, 208–9, 264
Rayleigh–Gans, 264

phase matrix, 49–54
circular-polarization, 52, 106

average, 107
normalized, 106–7
reciprocity relation for, 53

coherency, 50–1
reciprocity relation for, 53

modified Stokes, 52
reciprocity relation for, 53

normalized Stokes, 100–2
Fourier decomposition in azimuth

for, 105
symmetry properties of, 102

Stokes, 51–2, 83
average, 70, 72, 78
backscattering, 54
expression in terms of the scattering

matrix, 88–91
for macroscopically isotropic and

mirror-symmetric media, 88–91
inequalities for, 52, 71
reciprocity relation for, 52–3, 71
symmetry relations for, 90–1

phase velocity, 13, 14
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photon correlation spectroscopy, 7
physical optics approximation, 220
plane wave, 3, 12, 16–7, 37, 116

expansion in spherical waves, 360–1
expansion in vector spherical wave

functions, 117, 376–7
point matching method, 196–7

generalized, 197, 204
multiple-expansion, 197, 204–5

polar angle, 16
polar stratospheric clouds, 352, 354
polarization, 54

circular, 21, 23, 54
degree of, 28

complete, see polarization, full
degree of, 28
elliptical, 21, 23

degree of, 28, 54
full, 27, 54
left-handed, 20
linear, 21, 23, 54

degree of, 28, 29, 271
natural, 27
right-handed, 20

polarization analyzer, 225
polarization ellipse, 20–4

ellipticity of, 20
orientation of, 20

polarization modulation technique, 226, 228
polarization modulator, 225
polarizer, 225
polydisperse particles, 158, 165, 250–73,

282–310, 345, 354, 356
polyhedral particles, 146, 213, 320–3
position vector, 10
Poynting vector, 11

complex, 12
time-averaged, 12, 14–5, 47, 123–4

probability density function, 72
normalization condition for, 72

quarter-wave plate, 225
quasi-monochromatic light, 5, 26–9, 52, 56,

58, 63, 71, 77

radars, 233, 352
radiance, see specific intensity
radiation condition, 116–7, 194, 199

radiation force, 60–2, 96–7
emission component of, 62, 65, 98

radiation pressure, 60
radiation torque, 62–3

emission component of, 66
radiative transfer equation, 6–7, 76, 78

for macroscopically isotropic and
mirror-symmetric media, 105, 108–9

radius
effective, 161, 285–7
equivalent-sphere, 73, 172
surface-equivalent-sphere, 171–2
volume-equivalent-sphere, 172

radius vector, 10
rainbows, 258–60, 264
randomly and sparsely distributed particles,

68–71, 75, 77
randomly oriented particles, 73, 87, 100,

132–9
randomly shaped particles, 322
ray optics approximation, see approximation,

geometrical optics
ray-tracing approximation, see

approximation, geometrical optics
Rayleigh approximation, 206–9, 264
Rayleigh–Debye approximation, see

approximation, Rayleigh–Gans
Rayleigh–Gans approximation, 35, 209–10,

256, 264, 271
Rayleigh–Gans scattering, 264, 271–3
Rayleigh hypothesis, 117, 146, 196, 221
Rayleigh scattering, 247, 250, 264, 271–3,

309, 310
reciprocity relation, 41, 52–3, 71, 84
reference plane, 24

rotations of, 24–5
refractive index, 5, 14

relative, 33
resonance structure, 241–50, 279–82, 338
resonances, 241–50, 273
ripple structure, 239, 241, 245, 250–1
rotation matrix

for circular-polarization representation,
25–6

for modified Stokes column vector, 25
Stokes, 25

rotationally symmetric particles, 46, 93, 102,
121, 125, 129, 133, 135, 138,
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148–50, 165, 169, 171–2, 180

S matrix, 122–5
unitarity condition for, 124–5

scale invariance rule, 147, 230
scattered field, 3, 31, 33, 36–7, 47, 116–7
scattering, 3

diffuse, 6
dynamic, 7
elastic, 3
electromagnetic, 3
far-field, 5, 35–8, 66–7
forward, 6, 49, 54, 91–4, 99
incoherent, 6, 74
independent, 6, 74, 75

condition for, 74
 multiple, 6, 75, 344

single, 68–71
static, 7

scattering angle, 60, 83, 87
scattering dyadic, 37, 41, 117–8

reciprocity relation for, 41
scattering matrix, circular-polarization,

normalized, 106–7
expansion in generalized spherical

functions, 107–8, 136, 141
symmetry properties of, 107

scattering matrix, Stokes, 83, 85–6, 94
average, 87
effects of nonsphericity on, 99–100
for backward scattering, 94–5
for forward scattering, 93–4
for macroscopically isotropic and

mirror-symmetric media, 87
for randomly oriented particles, 133–7
for rotationally symmetric particles, 93–4
for spherically symmetric particles, 98–9
inequalities for, 87–8
normalized, 100–3

expansion in generalized spherical
functions, 103–5, 136–7, 141, 166,

172–3, 180–1
expansion in Wigner d-functions,

103–5
for clusters of spheres, 341–7
for irregular particles, 323–39
for randomly oriented circular

cylinders, 215–8, 301–7, 315–8

for randomly oriented spheroids, 180,
182, 285–94, 297–8, 309–11,
313–4

for rotationally symmetric particles,
102

for spherically symmetric particles,
102, 140, 160, 167, 229–30,
245–9, 258–67, 271–6

properties of, 101–3
symmetries of, 85–6

scattering medium
macroscopically isotropic, 87
macroscopically isotropic and

mirror-symmetric, 87, 100
macroscopically mirror-symmetric, 87

scattering plane, 83, 88
scattering tensor, 39

reciprocity condition for, 40
Schelkunoff equivalent current method, 115
secondary wave, 3
separation of variables method, 113–4, 179,

192–3, 202–5
multi-sphere, 156, 201

shape averaging, 72–3, 334–7
shape distribution, 72–3
single-scattering albedo, 58, 228, 255–6, 284,

293–6, 299, 303, 340, 344
average, 97

single-scattering approximation, 6
size averaging, 72–3, 159–61, 172–3, 335

effects of, 250–2, 279–82, 341
size distribution, 72–3, 160–1, 173, 177,

250–2, 283–6
gamma, 160, 252, 283–6
log normal, 160, 283–6
modified bimodal log normal, 161
modified gamma, 160, 283
modified power law, 161, 283–7
power law, 160, 285

size parameter, 74, 147, 192
effective, 250, 286
major-axis, 178
surface-equivalent-sphere, 178, 308
volume-equivalent-sphere, 308

specific intensity, 77
column vector, 77–8

speed of light, 14
spherical harmonics
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scalar, 360
vector, 373–6

spherical particles, 98–9, 102, 122, 139–42,
158, 214–6, 238–78

anisotropic, 222
Faraday-active, 221
monodisperse, 238–50
polydisperse, 250–73

spherical wave, 36   
spherical wave functions

scalar, 371
vector, 115, 116, 372–8

spheroids, 171–2
optical properties of, 180–2, 185, 203–4,

210, 213, 280–98
with extreme aspect ratios, 307–14

statistical approach, 334–7
stochastically shaped particles, 322
Stokes column vector, 17, 51

circular-polarization, 19, 23, 105–6
additivity of, 28
rotation transformation rule for, 25–6

for quasi-monochromatic light, 27
additivity of, 27, 28

modified, 18, 23
additivity of, 28
rotation transformation rule for, 25

rotation transformation rule for, 24–5
Stokes parameters, 6, 7, 15, 17–8

ellipsometric interpretation of, 19–24
for quasi-monochromatic light, 26

additivity of, 27–8
quadratic inequality for, 27

quadratic identity for, 18
rotation transformation rule for, 24–5

subtraction method, 226, 228
superposition method, 156, 201–2, 204
superposition principle, 37
surface integral equation methods, 200, 205

time-domain, 205
Système International, 384

T matrix, 115, 117, 146
for aggregated particles, 154–8, 201
for rotationally symmetric particles,

148–50, 167–71
orientation-averaged, 127–9, 131
rotation transformation rule for, 119–21

symmetry relations for, 121–2
translation transformation rule for, 125–7
unitarity property of, 122–5, 152

T-matrix computer code
for randomly oriented, rotationally

symmetric particles, 165–80
for randomly oriented two-sphere

clusters, 186–9
for a rotationally symmetric particle in an

arbitrary orientation, 180–6
multi-sphere superposition, 190

T-matrix method, 114, 115–90, 202–5
superposition, 154–8, 201

recursive, 158
temperature, absolute, 3, 63
time, 5, 9
time factor, 5, 15
time-harmonic field, 10
total field, 31, 35, 54–5, 197
transition matrix, see T matrix
translation addition theorem, 126, 156, 157,

201, 378–9
transverse wave, 13, 36

unimoment method, 194
unitarity condition, 124
unpolarized light, 27

Venus clouds, 274–8
volume integral equation, 31–5, 197
volume integral equation method, 197–9

wave equation, vector, 33, 113
wave number, 14
wave vector, 12
wavelength, 15
weak photon localization, see coherent

backscattering
Wentzel–Kramers–Brillouin approximation,

210
Wigner d-functions, 103–4, 362–9, 371, 377
Wigner D-functions, 367–8, 377
Wigner 3j symbols, 141, 379, 381

zenith angle, see angle, polar




